Exponential Decay:

Exponential Relations: \(y = A(b)^t \) \(A = \) \(\text{initial} \) \(b = \) \(\text{base} \) \(\text{(multiplying factor)} \)

Decaying when \(0 < b < 1 \)

Examples of Exponential Decay:

Half Life \(y = A \left(\frac{1}{2} \right)^t \) \(A \) is the initial amount of material, \(t \) is time, \(h \) is half life

Depreciation \(b = 1 - \% \text{ pop decline} \)

Half-Life:

1) The half-life of carbon-14 is 5730 years. The relation \(C = \left(\frac{1}{2} \right)^{\frac{t}{5730}} \) is used to calculate the concentration, \(C \), in parts per trillion, remaining \(t \) years after death. Determine the carbon-14 concentration, rounded to three decimal places, in

a) A 5730 year-old fossil

\[
C = 1 \left(\frac{0.5}{5730} \right)^{5730} \\
C = 0.5
\]

b) Why does your answer from part a make sense?

c) A 10,000 year old animal bone?

\[
C = 1 \left(\frac{0.5}{10000/5730} \right)^{5730} \\
C = 0.3
\]
Population:

2) The population of a village is decreasing by 7% per year. In 2006, the population was 19 800.

a) Write an exponential relation that models the population, P, over time t. Use $t = 0$ to represent the year 2006.

$$P = 19800 \left(0.93\right)^t$$

b) Use the relation from part a) to estimate the population in 2010.

$$P = 19800 \left(0.93\right)^4$$

$$P \approx 14811$$

2006 \rightarrow 2010

c) In what year will the population decrease to half its 2006 value?

Guess & Check

$$19800 \left(0.93\right)^t \approx 9900$$

2015-2016

Practice:

1) Stage lights are often covered with gels to colour the light, but this also reduced the intensity of the light. The intensity of light, I, in watts per square centimetre is given by the relation $I = 1400 \left(\frac{1}{2}\right)^n$, where n is the number of gels used. Find the intensity of light with 5 gels.